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1. Introduction

The purpose of this study is to examine the possibility of implementing an iterative algorithm such as

the conjugate gradient algorithm in an optical signal processor. This research is an extension of work

done as part of the Summer Faculty Research Program (SFRP) in 1986 at RADC, Griffiss AFB, NY.

The period of performance covered by this report is March 1, 1987 to March 31, 1988.

The SFRP work focused on a prototype acousto-optic signal processor which was already in

experimental operation as part of an RADC project (see [1,2]). This processor uses a variation of the

Least Mean Square (LMS) algorithm. The goal of the current project is to investigate more powerful

algorithms such as conjugate gradient that might provide improved performance for such a processor.

2. Background on the Problem

2.1 The Signal Processing Application

The particular signal processing application is adaptive noise cancellation. A main signal is received

consisting of the signal of interest s(t) plus a noise signal n(t). Omni-directional side antennas receivc

signals nj(t), j=1,...,N. A weighted combination of delayed versions of these side signals is used to

estimate the noise n(t). We denote this estimated noise by y(t). The problem is to determine the

optimum combination of weights in order to minimize the difference between the estimated noise and

the actual noise.

The quantity we would like to minimize is

E(le(t)12) (2.1)

where e(t), the so called 'error signal', is the difference between the main signal plus noise s(t) + n(t)

and the estimated noise y(t), and E indicates expected value over all time with respect to some

probability distribution. In practice, rather than a true expected value over all time, some finite

measure or summation of recent signal history is used.

The expression (2.1) can be thought of as a functional (ie., real valued operator) of the unknowii

weight vector w used to form the estimated noise. It is well known (31 that the minimization of this

functional is equivalent to setting its gradient equal to zero. This leads to the linear equation

Aw(x) = b(x) (2.2)

=-,-=-= im i iaim B I I1



where w(x) is the unknown weight vector function evaluated at the delay point x, b is a vector function

formed from the side signals and the main signal plus noise, and A is a positive definite symmetric

operator corresponding to the covariance matrix in discrete formulations of this problem (see Appendix

I or (4] for a discussion of the derivation of the analog version of this problem).

2.2 The Least Mean Square Approach

The formulation of the quantities A and b in equation (2.2) is a formidable computational task. As a

result, several approaches have been advanced which attempt to circumvent this difficulty. One of

these, the least mean square (LMS) algorithm (cf., (5]), has been implemented on several optical

processors ([1], [6]), including the one under consideration here. It is the performance of this algorithm

that we would like to improve upon.

Although the LMS algorithm is usually thought of as an approx'vrhation of more complicated

algorithms for minimizing the quantity (2.1), one can also think of it directly as an algorithm for

minimizing the quantity

le(t) i2 (2.3)

instead of minimizing the quantity (2.1). As was the case before, this minimization problem is

equivalent to setting a certain gradient equal to zero. In the case of a single side signal, the gradient

associated with (2.3) is proportional to

e(t)n1 (t-x). (2.4)

This gradi.'nt expression has the advantage of being easy to compute. In particular, it does not involve

the calculation of a covariance matrix. However, the expression (2.3) only has a minimum in the case

when (2.4) is zero. This can happen only when e(t) is zero. But e(t) has the form

s(t) + n(t) - y(t).

We hope to make the quantity n(t) - y(t) zero, but in general s(t) is not zero, and so e(t) will also not

be zero when there is a main signal present. This is a potential problem with LMS and we will

consider it further in the next section.

Iterative processes have the general form

2



wi+l(x) = wi(x) + aipi(x) (2.5)

i = 0,1....

where wi(x) is the ith iterative approximation of w(x), pi(x) is a direction vector which indicates the

direction to go in to get to the next iterate Wi+l, and ai is the scalar stepsize that tells how far to go

in the direction pi.

For the LMS algorithm, we take pi(x) to be the vector given by (2.4) with t = iAt, where At is the

time increment between iterations. The stepsize is taken to be a sufficiently small fixed scalar a. As

discussed in Appendix 1, it is possible to solve the LMS iteration process directly to obtain

k-1
wk(x) = a E einl(iAt - x), (2.6)

i=O
where ei = e(iAt). Letting At -- 0, we get the analog version of (2.6), namely

t

w(x) = a J e(s)n 1 (s-x)ds. (2.7)

0

It is actually this solution, and not the iterative version of LMS, that is being implemented in the

optical processors discussed in (11 and (6]. In this form, LMS is not a true iterative algorithm. Rather,

it represents an approximate version of a complete solution of the minimization problem.

The advantage of LMS is the ease with which it can be implemented in a real time processor. The

flow of data in such a processor is uninterrupted as the as the solution is continuously updated. This

makes it particularly appealing for use in an optical processor. This is a desirable property of LMS

that we should try to retain. Unfortunately, there are problems inherent in LMS that result in a

degradation of performance that can reach unacceptable levels.

2.3 Problems with LMS

As mentioned in the previous section, there may be problems associated with LMS when a main signal

is present (ie., signal-to-noise ratio (SNR) greater than 0). We can observe this phenomenon in the

following numerical example (all numerical examples for this report were produced on a personal

computer using Turbo-Pascal).

Figure 2.1 shows the performance of a numerical simulation of the LMS method in a case when the

main signal s(t) is 0. The signal received at the main antenna is just a noise signal n(t) which we are

attempting to cancel. In this example,

3



0.25
V.S

.o o.5. G.

4..25

AtSO

-0.75

-I.e.

FIGURE 2.1 LMS WITH SNR = 0

I...

05

US

-0.25

-Ie.

FIGURE 2.2 LMS WrTII SNR = 0.5

4



n(t) = sin(207t). (2.8)

The side antenna signal is of the form

n1 (t) = sin(20t + 0.1). (2.9)

There are 30 delay taps spread over a delay aperture of 0.3 sec. The fixed stepsize is a = 0.05. As we

can see in this figure, good noise cancellation is achieved after approximately half a second.

However, when even a small main signal is present, performance deteriorates drastically. Figure 2.2

shows the effect of adding a main signal of the form

s(t) = 0.5 sin(30rt) (2.10)

(so that the SNR is 0.5). The graph shows

n(t) - y(t) (2.11)

the difference between actual noise and estimated noise. As one can see, there is essentially no noise

cancellation. This is in agreement with observed experimental results [71, citing that LMS works well

in "extremely poor SNR environments". Indeed, there is no hope of it working otherwise!

Why should this be the case? Recall that

e(t) = d(t) - y(t)

where

d(t) = s(t) + n(t)

is the signal received at the main antenna. If we substitute this expression for e(t) in (2.4), and then

use (2.4) as the direction vector pi in (2.5), with t = idt, we obtain the following form for LIS:

wi+i(x) = wi(x) + a(d(iAt) - y(iAt))ni(iAt - x). (2.12)

Convergence of this method implies

5



wi+1 w i

for large i, which, in turn, implies that the second term on the right side of (2.12) must converge to 0.

But this implies

d(iAt) - y(iAt) - 0

or, equivalently,

s(iAt) + n(iAt) - y(iAt) - 0.

But this quantity can never be 0 if s(t) is independent (uncorrelated) of n(t) and y(t) (which we hope is

the case if we are going to avoid cancelling the main signal!). Thus, LMS is trying to annihilate a

quantity that can never be zero.

To put this another way, in the case when s(t) is not identically zero, the quantity (2.3) has no

minimum weight associated with it. LMS is trying to solve a problem that has no solution. The

method which we introduce in the next section not only has better performance characteristics than

LMS, but also completely avoids this serious drawback of LMS as a noise cancellation algorithm in the

presence of a main signal.

6



3. Nonstationary Iterative Methods

3.1 New Approach to Iteration

We now consider a new way of incorporating iterative algorithms in a real time signal processing

environment. The motivation for the approach is optical signal processing, which allows us the

computational speed to consider such an approach. The uniqueness of the method lies in the fact that

the data flow is allowed to drive the iterations, providing effective real time performance. Rather than

perform multiple iterations on a fixed problem, which must be formulated from stored data, we allow

variations in the incoming data to continuously update the problem while iterations are being

performed. This is well suited to optical processing, where data storage and retrieval can be a problem,

but computational speed is not. The result is an adaptive process that can significantly outperform the

traditional LMS algorithm.

In contrast to the LMUS algorithm, the new iterative technique deals with equation (2.2) directly, rather

than an approximation of that equation. To illustrate the technique, we consider the simplest type of

iterative algorithm of the form (2.5), namely the steepest descent algorithm with fixed stepsize. This

algorithm has the form

wn+ = wn + a rn (3.1)

rn = b - A wn .

The fixed scalar a is the stepsize. The sequence {wnl constructed from (3.1) will converge to the

solution ws of (2.2) provided

a < I/M

where M is the largest eigenvalue of A (cf. [81).

The usual approach in implementing an algorithm such as (3.1) is to compute A and b from the input

data once, and then to regard then as fixed while the iterations are being performed. However, for our

real time acousto-optic processor, it is easier to recompute A and b on every iteration, rather than to

store and retrieve their vales. This recompkitation of A and b, however, introduces variations in their

values as the iterations are being performed. Thus, it is more appropriate to write the algorithm (3.1)

in the form

Wn+ 1 = wn + a rn (3.2)

rn = bn - Anwn

7



where An and bn are the updated versions of A and b at the nth iteration.

The algorithm (0.2) is an example of a nonstationa iterative process as defined for example in [9]. In

practice, one finds that An and bn do in fact change on every iteration. What remains the same,

however, is that the sequence of problems

An w = bn, n = 0,1,2,... (3.3)

all have the same solution w, for each value of n (or, at least, w, changes slowly in time compared to

the speed of the iteration process).

This makes sense in the context of our noise cancellation problem. Recall that the weight vector

solution w, represents which of the delayed versions of the side signal are to be weighted. This is not

going to change from one iteration to the next. Thus, the solution does not change, even though the

formulated problem changes from one iteration to the next.

When the solution does change over time, this type of process will adapt to the new solution since we

are always incorporating the most recent signal data. Moreover, convergence to the new solution value

should be very quick since the old solution value provides a good starting point from which the

iteration process can seek the new solution.

Other iterative algorithms can also be put in nonstationary form. One improvement on the steepest

descent algorithm is to optimize the stepsize at each iteration step. The nonstationary version of this

algorithm has the form

Wn+1 = wn + anrn

rn = bn - Anwn (3.4)

an = (rn,rn)/(rn,Anrn).

i'he nonstationary conjuigate gradient algorithm takes the 'orm

8



Wn+ 1  wn + anPn

Pn+l = rn+ 1 - cnPn
an = (rn,Pn)/(pn,AnPn) (3.5)

Cn = (rn+lAnPn)/(pn,AnPn)

rn = bn - Anwn •

Here, an and Cn are scalars, ( , ) indicates inner product, and Pn is the direction vector. In the next

section, we show numerically that sequences {wa) generated from either (3.2), (3.4) or (3.5) will

converge to the common solution w, of the sequence of problems (3.3). In section 4.1 we look at

analytical results concerning the convergence of such sequences to the desired solution w*.

3.2 Numerical Results

This section presents the results of three numerical simulations comparing the performance of several

nonstationary iterative algorithms and the traditional LMS algorithm. As mentioned previously, all

numerical results were produced on a personal computer. In order to be computationally feasible on

such a computer, the examples are constructed so that an exact solution is possible with a relatively

small number of tap weights (we choose 6 tap weights for the iterative algorithms and 30 for LMS). In

order to study the behavior and stability of the methods for larger numbers of tap weights, more

computer power will be needed. For an optical processor, however, large numbers of tap weights will

present no computational difficulty.

EXAMPLE 1: For the first example, we have no main signal, so that SNR = 0. The noise signal to

be cancelled is

n(t) = sin(20rt + 50t), 0 < t < 1.

The graph of n(t) is shown in Figure 3.1 (a). A single side antenna receives a copy of the noise signal

in the form

nI(t) = n(t + 0. 1).

Delayed versions of this side antenna signal are formed over a total delay aperture of R = 0.3.

Figure 3.1 (b) shows the results for the LMS algorithm. The algorithm is run with a fixed stepsize of

0.1 and 30 delay taps. 200 iterations are used over a time interval from t = 0.35 to t = 1.3 (ie., at

each iteration the current time is updated by a time increment of At = (1.3 - 0.35)/200. The graph

9
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shows the difference between actual noise and estimated noise. We observe that this output noise

settles down to a signal of amplitude 0.05, although the algorithm does display some problems near

t=1, where the noise signal becomes compressed (higher frequency).

Figures 3.1(c)-(e) show numerical results for, respectively, the nonstationary steepest descent, with

fixed and optimized stepsize, algorithm and conjugate gradient algorithm. The number of delay taps

used is 6, so that the covariance matrices An are 6X6, and the vectors bn have 6 components. The

entries in An and bn are, respectively, auto-correlation and cross-correlation functions, which are

computed using integration over time. Theoretically, this integration should be performed over the

time interval -oo to oo. However, in practice this integration can only be done over a finite interval.

We choose the interval from t0 - 3 to to, where to is current time. The integration is performed

numerically in the simulations using a 200 point Simpson's rule.

For these nonstationary algorithms, the values of An and bn are recomputed on every iteration. The

simulations are run from time t = 0.35 to t = 1.3. At each iteration, the current time is updated by

an amount At = (1.3-0.35)/(# iterations).

From Figures 3.1(c)-(e), one can see that in this example the nonstationary iterative algorithms

provide a significant improvement in performance over the LMS algorithm. The complexity of the

noise signal causes no difficulties for these algorithms. Not surprisingly, the best performance is

obtained from the conjugate gradient algorithm, computationally the most complex of the algorithms.

EXAMPLE 2: This is another example with SNR = 0. We consider a noise signal, shown in Figure

3.2(a), of the form

sin(50xt) 0 < t < 0.5

n(t) = sin(100 rt) 0.5 < t < 1.0

sin(50-rt) 1.0 < t < 1.5.

A side antenna receives a signal of the form

nl(t) = n(t + 0.1).

This particular noise signal was chosen to provide another example where the LMS algorithm has

apparent difficulty.

11
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The LMIS algorithm was run with a stepsize of 0.000001, with all other parameters being the same as in

the previous example. Figure 3.2(b) shows the output of this algorithm. As one can see, there is

essentially no noise cancellation. Larger numbers of iterations, and larger and smaller stepsizes

produced no better results.

Figures 3.2(c)-(d) show the results for nonstationary steepest descent and nonstationary conjugate

gradient algorithms. The noise cancellation is similar to the previous example, and is much better

than LMS.

EXAMPLE 3: For our final example, we revisit the problem considered in Section 2.3. Recall that the

LMS algorithm did not work at all in the presence of a main signal. Figures 3.3 (a)-(b) show the

results of applying the nonstationary steepest descent with fixed stepsize and nonstationary conjugate

gradient algorithms to the same problem. The noise signal is defined by (2.8), with side signal given

by (2.9) and main signal given by (2.10). As one can see from the figures, the performance of these

algorithms is not affected by the presence of a main signal. Figures 3.3(c)-(d) show the effect of an

even larger SNR of 10. The steepest descent algorithm remains unaffected, while there is some

deterioration in the performance of the conjugate gradient algorithm. It is believed that this is due to

the effect of the large magnitude of s(t) on the numerical integration scheme, and not due to the

conjugate gradient algorithm itself. In this example, apparently conjugate gradient is more sensitive

than steepest descent to errors in the computation of An and bn. This is not believed to generally be

the case.

What these examples show is that there are situations where LMS does not work at all as a noise

cancellation algorithm. We have shown that nonstationary iterative algorithms will work in these

same situations. Since these simulations were run on a PC, the examples had to be set up so that a

solution could be attained with a small number of tap weights (6). The performance of these

nonstationary algorithms should be investigated on larger computers using a greater number of tap

weights. Matrix pre-conditioning techniques may be necessary in this case to deal with possible ill

conditioning effects.

4. Analysis

Not much is available in the literature concerning analysis results for nonstationary iterative processes

of the type we are considering here. This is not surprising, since, without optical processing, such a

process presents a formidable computational task. The next section contains a convergence proof for

the nonstationary steepest descent algorithm. In Section 4.2, convergence results are combined with

13
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perturbation results to produce an error analysis for tV. '--rithm.

4.1 Nonstationary Convergence Results

The situation we are considering is as follows. We have a sequence (Ak) of positive definite symmetric

linear operators (for example, covariance matrices) and a sequence {bk) of vectors such that the

equations

AkW = bk, k = 0,1,2.... (4.1)

have a common solution w*. Let the scalar a be such that

I l-a Ak 11< < 1 (4.2)

for each k = 0,1,2,..., and some < 1. The operator I is the identity operator. This is not an

unreasonable condition since a similar condition is necessary for convergence of the normal steepest

descent process [10]. We then have that the sequence (wk) generated by the process

Wk+1 = wk + a (bk - Akwk), k = 0,1,2,... (4.3)

converges in norm to w,.

To prove this, note in the following that

bk - Akw* = 0

so that we have

lIWk+l -w =l[wk+a(bk - Akwk): w*l

= II wk - w. + a(bk-Akwk) - a(bkAk W.) *

- II wk - w, - aAk(wk - w,) II

= II (1- aAk)(w k - w,) I

I -a,\lI II wk" w II

15



< II wk- w*

< tk+1 1 WO - w,

Since < 1, this last term -- 0 as k --+ oo. This completes the proof.

As a corollary, we note that it suffices to replace condition (4.2) with

I - aAk = < 1 (4.4)

for each k. We then find that

II wk+ 1 - w* II _<(1 t II w0 - w*II

and the term on the right side also -. 0 as k --- oo since each factor in the product is < 1. A

sufficient condition for satisfying (4.4) is

a < mk (4.5)

where mk is the smallest eigenvalue of Ak.

In [11], convergence results are given for the case when the sequence of operators (Ak} satisfies

Ak --- A for some fixed operator A. However, the situation considered here, namely that the equations

(4.1) have a common solution, seems to better reflect what would happen in practice. Table 4.1 shows

data taken at three different time steps during one of the simulation runs discussed in the previous

section. The three matrices shown here are obviously very different. What is the same is the solution

w = (0,0,1,0,0,0) to the three linear equations represented by these matrices and vectors.

4.2 Error Analysis

In (12], a nonstationary perturbation analysis is given for the stationary steepest descent algorithm.

That is, the fixed problem

Aw = b

is solved using the usual steepest descent algorithm, and the effects of different perturbations

16



Covariance Matrix 1:

0.100725 -0.003987 -0.018533 -0.002036 -0.011653 0.003697
-0.003987 0.092327 -0.012011 -0.023460 -0.000029 -0.003673
-0.018533 -0.012011 0.083455 -0.019583 -0.024551 0.007741
-0.002036 -0.023480 -0.019583 0.074181 -0.024853 -0.019566
-0.011653 -0.000029 -0.024551 -0.024853 0.066859 -0.026961
0.003697 -0.003673 0.007741 -0.019566 -0.026961 0.058625

b-Vector 1:
-0.01853 -0.01201 0.08345 -0.01958 -0.02455 0.00774
SSolution 1:,

-0.00000 0.00000 1.00000 0.00000 0.00000 0.00000

Covariance Matrix 2:

0.133363 -0.125000 0.116637 -0.108363 0.100000 -0.091637
-0.125000 0.125000 -0.116637 0.10e363 -0.100000 0.091637
0.116637 -0.116637 0.116637 -0.108363 0.100000 -0.091637

-0.108363 0.106363 -0.108363 0.106363 -0.100000 0.091637
0.100000 -0.100000 0.100000 -0.100000 0.100000 -0.091637

-0.091637 0.091637 -0.091637 0.091637 -0.091637 0.091637

b-Vector 2:
0.11664 -0.r1664 0.11664 -0.10836 0.10000 -0.09164

1 Solution 2:
-0.00000 0.00000 1.00000 -0.00000 0.00000 -0.00000

Covariance Matrix 3:

0.167037 0.037466 -0.009107 -0.002472 -0.013037 -0.000387
0.037466 0.157761 0.036683 -0.000259 0.003787 -0.01392e

-0.009107 0.036683 0.150458 0.036188 0.006093 0.010720
-0.002472 -0.000259 0.036188 0.141609 0.031116 0.008366
-0.013037 0.003787 0.006093 0.031116 0.132684 0.026026
-0.000387 -0.013928 0.010720 0.008366 0.026026 0.125200

b-Vector 3:
-0.00911 0.03668 0.15046 0.03619 0.00609 0.01072
Solution 3:
-0.00000 -0.00000 1.00000 0.00000 -0.00000 0.00000

TABLE 4.1 THREE DIFFERENT MATRIX PROBLEMS WITH SAME SOLUTION
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introduced at each step of the iteration process are studied. Thus, at the nth step, instead of having

exactly A and b available, we assume that we are dealing with perturbed versions of these quantities:

A + bAn

b + 6bn.

The analysis provides a bound for the difference between the perturbed iterates *n and the normal

unperturbed iterates wn .

In th's section we apply these ideas to the nonstationary steepest descent process. As before, we

consider a sequence of problems

An w = bn, n = 0,1,2.... (4.6)

with common solution w,. We now introduce perturbations AR and bbn at each iteration step, so

that we obtain a sequence of perturbed problems of the form

w= 6n

where
An - An + 6An
6n = bn + 6bn.

This is a particularly important problem to consider in the context of optical implementation, since we

can expect errors in the formulation of A and b at each iteration step. We now determine the effect of

these errors.

The nonstationary stcepest descent algorithm applied to the sequence of problems (4.6) has the form

-n+1 = In + a(b n - An *n), n = 0,1,2,... (4.7)

We assume that the stepsize a has been chosen to satisfy the condition (4.2). The nonstationary

process generates a sequence (*n). From a practical point of view, what we would like to know is: for

large n, how far off is the perturbed iterate Wn from the true solution w, of the unperturbed system

(4.1)?
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We answer this question in several stages. First, we determine the maximum difference between the

perturbed iterate *n and the corresponding iterate wn from the unperturbed process (4.3). The

analysis here is very similar to that given in [12], so we only sketch the details.

Define
6 wn = Wn - Wn, n = 0,1,2,...

Subtracting equation (4.3) from (4.7), we find that 6wn satisfies a nonhomogeneous difference equation

of the form

bnl= (I - a~n)6 wn + a gn, n= 0,1,2,... (4.8)

where

gn = 6bn - 6Anwn •

Equation (4.8) can be solved directly to obtain

k=W lj=k+l

(see (12] for the precise meaning of the noncommutative product of operators on the right). Thus,,,/ n ko
11 bw~ a (E {j='- III - ajnII} ) (ma 1190) (4.9)

Denote

a sup II 6An II
n

sup 11 An II
n

W sup II wn 11.
n

a and f are finite by assumption and W is finite since we assume {wn} is a convergent sequence.

Then
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Max 11g0 I 5 a + ,W.

Also,

III - aAjII < 1i - aAjji + aa

< (+aa

so that

n j(II III -aAjII n + ~aa1k. (4.10)E 11 -,jl E { +,
k=0 =k+1 k=0

The right side of (4.10) converges to
1

1- ( + an)

as n -- oo, provided

t+aa < 1. (4.11)

Thus, in this case we have from (4.9),

sup 61v1 n 11 : <(i+ W (4.12)Sn -1- +o +  w  . (.1

If we define mj as the smallest eigenvalue of A. and let m equal the infimum of the sequence {mj} then

III-aAjlI= 1-amj < 1-am.

If we assume m > 0 and take

I1-am < 1

the condition (4.11) becomes

and the bound (4.12) can be written as

sup 1 'n-Wn wn < 1 1- +aW . (4.13)
n
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This implies that the perturbed process (4.7) could become unstable if the perturbations on An exceed

m.

We can now estimate the difference between i*n and w,:

II 'Vn- w* 1 II n- wn 11 +11 Wnw II.

For sufficiently large n, given c > 0 we can write

i - _ 1 +aW + C. (4.14)

This is the desired result providing the distance of the perturbed iterates Cvn from the true solution w*.

Not surprisingly, this distance depends on the size of the errors a and j3, and this distance can blow up

very quickly if a is close to m.

For the case of a single fixed equation, error bounds analogous to (4.14) are frequently written in terms

of the condition number of a matrix. We can obtain a similar result here, if we agree to define the

"condition number of the sequence (An)" to be the quantity

r=M

where M is the supremum of the sequence (Mn}, where Mn is the maximum eigenvalue of An. We

assume M is finite, as well as the quantity

B - sup 1 bn II
n

Then from (4.14) we get a bound for the relative error:

1I '*n - w- [I/%V < +

Thus the relative error in kj, is proportional to the relative errors in (An) and {n)- The constant of

proportionality is dependent on r, the condition number of the sequence {An), as well as the

proximity of a to m. Once again we observe that the process can become unstable if the perturbations

(a) on An exceed the smallest (m) of the eigenvalues of all the An.

21



5. Optical Systems

In this section we consider two approaches for possible optical implementation of the nonstationary

iterative algorithms discussed in the previous sections. The first of these is a hybrid system that would

use optics to do the bulk of the computational effort and an electronic microprocessor to perform the

actual algorithm iteration step. This approach allows some flexibility in the choice of the algorithm,

although its performance would be limited by the optics to electronics conversion. The second

approach is an all optical implementation of the nonstationary steepest descent with f'ed stepsize

algorithm. This processor would be able to run just the one algorithm. It would, however, be an

important step toward realizing all-optical implementations of the other algorithms, such as conjugate

gradient, and it would provide real time performance.

5.1 Hybrid System

The first approach we consider is an electro-optic hybrid system. This system will use optics to do the

hard computational task of computing the covariance matrix An and the vector bn on every iteration.

These computations involve correlations and integrations which can be easily accomplished optically.

The iteration step of algorithms such as (3.4) and (3.5), however, involve scalar division which cannot

easily be done in the optics domain. An electronic microprocessor will be used to perform this step.

The use of a programmable microprocessor here will also allow the testing and comparison of different

algorithms in a real signal environment. The division or tasks between optics and electronics in this

hybrid processor is shown in Figure 5.1.

An overview of the hybrid system is shown in Figure 5.2. A single side signal n1 (t) will pass through a

tapped delay line and drive an array of light emitting diodes (LED's). The LED's are a low cost

alternative to a laser system. Also, unlike lasers, the LED's have linear characteristics over a broad

range in converting the input electrical signal into light, and their incoherent nature frees the system

from speckle (coherent noise) present in lasers.

The LED's will illuminate an acousto-optic (AO) spatial light modulator. Figure 5.3 shows the details

of the optics. The AO cell will simultaneously be driven by the same side signal n(t), so that delayed

versions of that signal will be spread across the cell aperture. This aperture should be wide enough to

produce sufficient delay (about 40 p-see) in the side signal. This use of AO cells to produce delayed

signals is similar to the techniques used in the optical signal processors of [1] and [6].

The LED's produce a vector whose componehts are delayed versions of the side signal nl(t). The same

vector is represented in the crystal aperture of the AO cell. The rcsult of illuminating this aperture
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with the LED's is the outer product of these vectors, which is a matrix. This matrix is collected and

time integrated by a 2-dimensional time integrating charge coupled device (CCD) detector array. The

output of the detector array is the covariance matrix An. A frame grabber will send the matrix data

to the digital microprocessor.

To construct the vector bn at each time step, a single LED, driven by the main signal plus noise, s(t)

+ n(t), illuminates an AO cell which is simultaneously being driven by the side signal ni(t). The

resulting modulated light represents a vector whose components are the product of s(t) + n(t) with

delayed versions of nl(t). This light is collected onto a one dimensional CCD time integrating detector

array. The output of this detector array is bn, which is sent to the microprocessor via an analog to

digital (A/D) converter board.

The main signal plus noise, s(t) + n(t), as well as the delayed versions of the side signal nl(t) from the

tapped delay lines, are also sent through the A/D board to the microprocessor. The iteration step and

the actual noise cancellation will be performed in the digital signal domain within the microprocessor.

Such a hybrid system should be viewed as a low cost proof of principle device that could validate this

class of nonstationary iterative processes for signal processing applications. The A/D conversion would

limit its usefulness as a real time processor.

5.2 All-Optical System

Figure 5.4 shows a simplified system diagram for a possible optical implementation of the

nonstationary steepest descent with fixed stepsize algorithm. Only one side signal is shown, although

multiple side signals could be handled with a multi-channel AO cell.

AO cells are used to produce a continuum of delayed versions of the side signals, and to form products

of these delayed signals with other quantities. A lens performs spatial integration. Liquid crystal light

valves (LCLV) perform time integration. The weight vector w is computed in the optic domain, and

the output of the system is an optical representation of the estimated noise signal y(t). This will be

converted by a detector to the electronic domain where it will be recombined with the main signal plus

noise, s(t) + n(t), to produce the final system output, namely

s(t) + n(t) - y(t).

This signal should be close to the main signal s(t).

While the nonstationary steepest descent algorithm is not the most powerful we have considered here,
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it is the simplest to implement optically. A realization of the optical implementation for this

algorithm would be an important step toward opening up this whole class of nonstationary iterative

algorithms to optical implementation.

6. Concluding Remarks and Recommendations

6.1 The State of the Art

Optical signal processors have already been built which can perform adaptive noise cancellation ([1]
and (6]), and optical processors implementing iterative algorithms such as steepest descent and

conjugate gradient have also been built, or at least proposed ([13] and [14]). So what is new about the

approach that is being presented here? The optical processors that actually take in signal data and

perform adaptive noise cancellation in real time are implementing some version of the LMS algorithm,

and thus suffer from the performance limitations of that algorithm. The optical processors which use

true iterative algorithms such as steepest descent do so on fixed matrix data, in the form of some type

of mask. Thus they are not true real time signal processors, ie., they cannot formulate the matrix

problem in real time and solve it. The approach we are advancing here does propose to formulate the

problem in real time and solve it with the performance advantages of iterative algorithms.

6.2 Recommendations

Nonstationary iterative algorithms can provide significant advantages over LMS for adaptive noise

cancellation. Optical processing will be necessary to implement these algorithms in a real time

environment because of the computational load. These algorithms are good candidates for optical

implementation because they take advantage of the power of optics, rather than just mimic what is

already being done electronically. The technology is here now to realize optically the simplest of these

algorithms, namely nonstationary steepest descent with fixed stepsize. The means to do this was

outlined in the previous section. A successful optical implementation of this algorithm would open this

whole class of algorithms to optics. The numerical examples of section 3 show the potential

improvement possible through the use of the conjugate gradient algorithm. This algorithm could be

implemented optically if a means can be found to accomplish scalar multiplication and division in the

all-optic domain. The hybrid processor discussed in the previous section provides a means of validating

this entire class of algorithms for signal processing applications. If improvements can be made in A/D

conversion, such a processor could find practical use.

Finally, the ultimate goal of optical computing in signal processing applications should be to produce

an optical processor using integrated optics, or perhaps some three dimensional analog of integrated

optics (three dimensional wave guides have already been developed). Acousto-optic cells, lenses, lasers,
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delay lines, and detectors have all been fabricated in integrated optics devices, with the technology for

spatial light modulators lagging somewhat behind. When integrated optics technology matures we can

hope to bring optical computing techniques out of the laboratory and into the field in the form of

rugged, practical devices.
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Preliminary Study of an Optical Implementation

of the Conjugate Gradient Algorithm

by

Stephen T. Welstead

ABSTRACT

An analysis was done on an acousto-optic signal processor in

order to make recmendations about possible improvements in the

algorithm being used. The optical nature of the processor

necessitates looking at data in an analog, rather than digital,

fashion. The minimization problem, which the processor is

solving, is formulated in an analog way. This leads to an

operator equation in Hilbert space, rather than the usual matrix

equation. Cperator theoretic versions of steepest descent and

conjugate gradient algorithms are discussed. Block diagrams are

given for these algorithms, along with reccmuendatins for

possible optical implementations.
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I. Introduction

My Ph.D. dissertation topic at Purdue University concerned

the numerical solution of integral equations. After several

years of working in that area, I decided to branch out -into other

areas, and began looking at optical signal processing and image

processing. Through the Center for Applied Optics at the

University of Alabama in Huntsville I was able to do funded

research in optics in 1985.

The research problem I selected at the Rare Air Development

Center, Griffiss AFB, NY, concerns the investigation of different

mathematical algorithms for implementation on an acousto-optic

signal processor. Because of the analog nature of the optics
involved, the problem to be solved turns out to be an integral

equation. The combination of optics and integral equations makes

this problem particularly well suited to my background.

II. Cbjectives of the Research Effort

The objective of the research effort is to improve the

performance of an acousto-optic signal processor (already in

experimental operation) by implementing a more efficient

mathematical algorithm. The system in operation now uses a

Howells-Applebaum least mean square (LMS) algorithm. It was felt

that performance could be improved if a more powerful algorithm,

such as the conjugate gradient algorithm, were implemented. My

individual objectives were:

1. Familiarize myself with the acousto-cptic processor now in

operation in order to fully understand its implementation of the

LlS algorithm.

2. Formulate the mathematical problem to be solved, keeping in

mind the special nature of the optical processing involved.

3. Study the conjugate gradient and related algorithms and

investigate the feasibility of implementing these algorithms in

an optical system similar to the one now in operation.

4. Construct a block diagram for the conjugate gradient

algorithm and make recamiendations about possible optical
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implementations.

III. Analo Ebrmulation of the Minimization Problem for the

Cptical System

We consider the signal processing problem of cancelling

noise from a main signal. The receiving configuration consists

of a main antenna and N cmni-directional side antennas. An

acousto-optic processor for such a system has been proposed and

implemented by Vannicola and Penn [VPl,VP2]. A similar system

has been considered by Vander Lugt (Vi].

We denote by n1(t),n 2 (t),...,nN(t) the signals received at

the side antennas at time t, and by s(t) + n(t) the main signal

plus noise received at the main antenna. Each side channel

signal ni (t) is input through an acousto-optic device which

produces a continuum of delayed signals ni (t-x), where the delay

x ranges from 9 to a value R which depends on the acousto-optic

device (R is typically in the range 5-59 microseconds). We call

x a 'spatial' variable here, since it represents position across

the acousto-optic device, although it can also be thought of as

another time variable.

our problem is to form a weighted combination of the delayed

secondary signals ni (t-x) in such a way that the result is a good

estimate of the noise n(t) received at the main channel. The

cntinuous nature of the delays necessitates that we look at this

problem in an analog way, rather than the usual discrete

formulation involving matrices and vectors. Thus, we define a

Hilbert space H consisting of the set of complex vector valued
fmunctions h(x) = (hl(x),...,hN(x)) defined on the real interval

[0,R] with inner product

N R
= Sh i (x)I iTdx

where for a complex variable z, i denotes its crnplex conjugate.
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Define the functions of two variables fi(x,t) = ni(t-x), i =

l....,N, and let f(xt) be the vector valued function whose ith

comonent is fi(xt).Our problem, then, is to determine a vector

valued weight function w(x) = (wl(X),...,wN(x)) so that the

scalar function

y(t) = (f_(.,t),w) (3.1)

is a good approximation of the noise n(t).

The output of the system is the "error" signal e(t), which

is the main signal plus noise minus the estimated noise:

e(t) = s(t) + n(t) - y(t).

The quantity we wish to minimize is

22
E(ee(t)j(t) I dt. (3.2)

E can be thought of as an expected value over time, although for

the purposes of our minimization prcblem we have amitted any

reference to a probability density function. (Cne can also think

of (3.2) as an "energy" integral.) Setting d(t) = s(t) + n(t), we

find

2
te(t) I e(t)e(t)

= (d(t) - y(t))(d (t) - y(t))
2 2

SId(t) l - y(M(ET -d (t)y(-t) + jy(t)•

Then

p4

E(y(t)d(t)) - y t) (t) dt

( t dt) 1" (x,t)w (x) dx dt
Sj=1%

Jf .(x t)d (TE) dIw (x) d x
j=l J
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( (b,w)

where

box) =

f (x,t)d(t) dt
ON

Similarly,

E(y(-t)d (t)) = E(y(t)d (t))

=(w,b).

Also, using (3.1), we find

2 0
E(Iy(t) ) = y(t)(t) d t

= fj (xt)wx dx3 (f (.,t),w) dt

= ;j(x) 0f(x~t) (f (.,t),w) dt)$ dx

- (Aw,w),

where A is an operator mapping H to B, defined by
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f 1 (x,t) (f(.,t),w) dt

Aw(x) =

f N(x,t) (fl.,t) W) dt

The jth canponent of Aw can be rewritten as

0 N R

S fj(x,t) T (s,t)wk (s) ds dt =} 9 3 k=12 K O

N__
= Cwk(S) f (xt)fk(st) dt ds

=1
i = ~(w,Aj x.)

where A.(x,s) is a vector valued function of two spatial
-j th

variables whose k ccmponent is given by

Ajk(xs) = 5 fk(s,t)fj(x,t) dt

for k = I,...,N.

The cperator A can be thought of as an analog "outer

product". It corresponds to the cross-correlation (or

covariance) matrix in the usual discrete formulation of the

problem.

It is straightforward to show that for functions w, u in H

we have

(Aw,u) = (w,Au)

so that A is a self adjoint cperator on H. Also, one can show
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(Au,u) I(u,f(.,t))f dt. (3.3)

The expression on the right side of (3.3) is > 0 for u 0 0, thus

A is a positive operator on H.

Our minimization problem can thus be reformulated as the

problem of minimizing the functional F defined by

2
F(w) -E(Idt) ) (bw) - (w,b) + (Aww) (3.4)

The right side of (3.4) is just E(Ie(t) 12 ) (see (3.2)). The
quantity E( Jd (t) 2 ) is independent of w and is of no consequence

in the minimization problem. Since A is a positive operator, the

problem of minimizing (3.4) is equivalent to solving the operator

equation

Aw b (3.5)

(IM, Theorem 2.1]). Equation (3.5) can also be written as a

coupled system of integral equations:

(w (s)Aj(k s bj
b wk (9 )) ds b (x), j = l,...,N (3.6)

IV. The Existinq Architecture

Before examining any new algorithms for the solution of

(3.5), let us first look at what the existing optical system

(reported in [VPl,VP2)) is doing. Figure 1 is a simplified

diagram of this system, showing one side channel only.

This architecture is implementing the LMS algorithm, which

is an approximate version of the method of steepest descent.

Assume, for the mament, that we are receiving signal samples at

discrete time intervals t = iAt for sane fixedt. Consider the

following iterative scheme for determining the weight function

w(x) (one side channel only):

w i+(x) = wi (x) + a. i (x ) .  (4.1)
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elt)

nh(t).\4•--- Acousto-Optic Cell

n1i(t-x)e(t)

ITime Integrator
Sdt

WW) = f0 n1(s-x)e(s)ds

L c Acousto-Optic Cell

nl(t-x)w(x)

Space Integrator e(t) s(t) + n(t) - y(t)

y(t) = nl(t-x)w(x)dx - 4

s(t) + n(t)

Figure 1
BLOCK DIAGRAM FOR CURREN SYSTEM

The functions pi(x) are direction 'vectors', ai are scalars, and
wi(x) is the i iterative approximation of w(x). The method of
steepest descent uses, for pi(x), the negative gradient of the
functional F, defined by (3.4), evaluated at wj(x). This
gradient is -2r i (x) (cf., ELI) where

ri(x) = b(x) - Awi(x) (4.2)

is the ith residual.

The U/S method uses the gradient of Je 1
2 , instead of the

gradient of F(w) - E(Jei ), where ei a e(iht). This gradient
can be computed as -2einl(i4t-x). The algorithm thus becomes

Wi+l(X) = wi(x) + aieinl(ibt-x) (4.3)

where we have absorbed the factor 2 as part of ai , Notice that
now we do not have to compute the operator A, as is necessary in

determining the residual defined by (4.2).

A-1O



The iterative scheme given by (4.3) can be easily solved by

observing that

K-I
iE:wi+l(X) - wi(x) = WK(x) - w.(x)-
i=0

Taking w0 (x) = 0, we obtain from (4.3)

K-I
wK(x) = .* aieinl(i t-x). (4.4)

i=0

We now make the assumption that the step size a i (or Obeam

steering signal' (M]) has been incorporated into the signal nI .
Letting & t - 0, we get the analog version of (4.4), namely

t
w(x) = e(s)n1 (s-x) ds.

This is the first integral which appears in Figure 1. It can

also be interpreted as a correlation of n1 with the "error'

signal e(t).

The advantage of this implementation is its simplicity.

There is no iteration loop, rather, the iteration scheme has been

solved directly, and an expression for the solution implemented.

Also, the problem of computing the operator A has been avoided

completely.

The disadvantage is that it may not produce an accurate

solution for w (x). The method of steepest descent typically can

have very slow convergence, and one would expect this L4S method

to be even slower.

V. The 0onjugate Gradient Algorithm

We now consider another iterative method for solving

equation (3.5). We return to the iteration equation (4.1), which

we now write for the case of multiple side channels, so that w
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(x)and P (x) are elements of the Hilbert space H:

wti+l(X) - wi (x) + a i Pi(WX) •

We now choose the direction vectors £i(x) to be a set of linearly

independent, A-orthogonal vectors, ie., the Ei(x) are such that

(RiA~j) = 0 for i # j. (5.1)

The scalar ai is chosen at each step of the iteration process to

minimize the value of F(wi). The iteration method is then said

to be a conjugate directions method (the use of the word

'conjugate' here comes from the fact that vectors satisfying

(5.1) are said to be A-conjugate).

If one chooses as the vectors Pi(x) the A-orthogonalized

residuals r i (x) = b(x) - Awi(x) then one obtains the conjugate

gradient method. This method can be sumarized by the following

iteration scheme (cf.,[L]):

w i+l(x) =w i (x) + a (x)

PEi+l(x) =ri+1 (X) - c i Pi(x)

a i = r (5.2)

-i - ) ip).

The value of a i cres fra minimizing F(wi), and the value of c.

comes from A-orthogonalizing the vectors ri(x). (It is a

nontrivial property of this method that one need only

A-orthogonalize pi+1 (x) with respect to Ei(x), and not all the

preceding Ej(x) 's, to obtain a complete A-orthogonal set (cf.

(L).)

What is the motivation for considering conjugate direction

met- -. s? ne reason is the following fact. Suppose we have sae

weight value y(x) and we compute a new value W1 (x) frm
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w ) W - w(x) + a. 4(x)

where 4(x) is any nonzero direction vector and a. is chosen to
minimize F(wl) (so a0 is given by the expression in (5.2) with

i=0). Now suppose w*(x) is the true solution of (3.5).. Then the

correct direction to go in, in order to reach exactly w* on the

next step, is always going to be A-orthogonal to the previcus
direction vector used (in this case, 4(x)). To see this, note
that the direction from w1 to w* is w - and

(E,A(w* - w ( ,b - Aw1)

= ( b -. _w) - a, ,.

(a is real)

= E'Eo -

= 0 from (5.2).

In the discrete case, when A is a finite dimensional matrix,

there are only finitely many directions which are A-orthogonal to
a given vector. Conjugate direction methods search through this

finite list until exactly the right direction vector is found.

They are thus guaranteed to converge to the exact solution

(ignoring roundoff errors) in a finite number of steps. In
contrast, if the method of steepest descent does not obtain the

exact solution in one step, then it will always take infinitely
many steps to reach the exact solution ([ILS]).

We are not dealing with a finite dimensional matrix, but

rather with an 'infinite dimensional" operator A, so the finite
step advantage mentioned above is not, in general, applicable to

our situation (there are, however, cases when finite convergence

is attained for an operator A (cf. [IS]). However, the

conjugate gradient method will always converge more rapidly than

the method of steepest descent (see ID] for estimates on the rate

of convergence).
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VI. Block Diagrams

In this section, block diagra for two iterative methods

are presented. These diagrms are constructed with optical

implementation in mind (eg., there is no storage of data or

previously computed results). Boxes labeled Ocompute Aw,

"ccmpute b, etc., are indicated in detail in separate diagras.

Figure 2 shows a diagram for the method of steepest descent.

This method is included here because it is simpler to implement

than the conjugate gradient algorithm, yet it contains most of

the computational difficulties (computing A, b, inner products,

and inverting scalars). If this method can be implemented

optically, then it would be relatively straightforward to modify

the resulting system for the conjugate gradient algorithm.

Figure 6 shows the diagram for the conjugate gradient

algorithm. As one can see, it contains all of the computations

required by steepest descent, plus additional computations

required for obtaining the vectors i (x). Since we have not

assumed the possibility of storing previously computed results,

we must compute both Li andri+1 in each iteration loop. Each of

these residual computations requires the computation of A and b

(see Figures 3-4).
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n1(t) s(t) + n(t)

'~ -~T
Compute A 1Compute b

r- 1

Compute a.'

a - r' X) -

w i(x)

w!ti1 (x) = yi(x) + aij 1 (x)

Figure 2. THE METHOD OF STEEPEST DESCENT

n1(t)

A~x 0 (x)n (tx) ~ dx w(s)n (t-s)ds A

Tim 1 3O w~~ 1 (- )d
C ~ Integrator

fn1 t-x)( <f( ,t dt = w()nlts)s<

Figure 3. COMPUTING Aw(x)
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A
Main Signal 0 __)dt

plus noise-4, Complex + d~ n I t-x )d~tT-> Ti me
d(t) = Conjugate e Integrator

s(t) + n(t)1

n 1(t)
005~)= n1(t-x) d~t)

Figure 4. COMPUTING b(x)

r(x) ----

Compute Inner
~Product

n 1(t) -f-

Poduct

(Li LArj)

Figure 5. COMPUTING a
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CoptIr 4 -- s(t)+n(t)
w.x)- )

-' r(x) b~) Ai( x) ,)
I i__(see Figure 2)

r ri(x)

21(x Compute a.!

a ipi x

a ! W (x) ~ x

- - < pi+1 (x) =r1i 1 (x )-c1.2.(x)

Figure 6. THE CONJUGATE GRADIENT ALGORITHM

n, (t)4 Compute 1

f Inner
A..()Product 

(2TR)Ivr

r .+1 (x) Inner n+1jpi(.A)l
-1 Product

Figure 7. COMPUTING c.i
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VII. rc mmendations

In order to achieve an optical implementation of either of

the iterative methods discussed in the previous section, we must

first be able to implement the individual operations shown in the

block diagrams. The major operations are:

1. Computation of the operator A (Figure 3). This requires two

acousto-optic cells and space and time integration. In the

current system, space integration is done with a lens, and time

integration with a !-iquid crystal light valve (LCLV). In fact,

all the operations needed to compute A are done in the current

system, so this should present no prcblem. Since A essentially

represents an wouter prcductw, reference [A], which discusses

optical computation of outer products, may be helpful.

2. Computation of b (Figure 4). This requires another

acousto-optic cell, and a time integration (ILV).

3. Inner Products. Each inner product requires complex

conjugation, pointwise multiplication, space integration, and

summation. Also, both vectors will be represented as light, so

an acousto-optic cell (which has one electronic input) may not be

appropriate. An efficient optical means will have to be found to

compute these inner products.

4. Inverting Scalars. This may be the hardest operation to

implement optically. It may require its own iterative loop.

The iterative loops involved in both the steepest descent

and conjugate gradient algorithms are a major departure from the

existing optical system. here are two alternatives to

approaching the implementation of these loops, both having to do

with the idea that the weights are supposed to be slowly varying

with time.

The first approach would be to consider taking in data in

blocks, rather than continuously, and doing a set number of

iterations on each block of data to detemine the weights. The

value of the weights would be updated as each block of data comes

in. This would be a true implementation of the algorithms as

outlined above.
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A second approach, which requires further analysis but would

be easier to implement, would be to do just one iteration as part

of the existing loc. Since the weights are assumed 'constant"
in time, this would have the effect of many iterations as new

data is continuously brought in and sent through the system.

Also, it would be "adaptive", just as the present system is, in

that changes in the data should eventually be reflected in

changes in the weights. 7his implementation would not too

different from the existing system, but further analysis is

needed to determine if the algorithms are still valid when the

iterations are slowly varying in time.

My reccmnerdation is that further analysis of the second

approach mentioned above be carried out. It should be ompared

to the first approach, ie., the standard implementation of the

algorithms. A computer simulation study comparing both should be

done. If an optical implementation seems feasible, it should be

carried out for the steepest descent method first, since most of

the computational difficulties are encountered there. The

conjugate gradient algorithm can be implemeted as a

straightforward andification of steepest descent.
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